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Abstract—The District Health Information Software Version 2
(DHIS2) facilitates the collection and analysis of routine health
data, to inform planning and decision making in the health
sector. Majority of previous studies on DHIS2 have focused on
social and political factors affecting the adoption of DHIS2 in
different countries. However, the software engineering aspects of
the DHIS2 have not been widely studied. Code review enables
developers to review each other’s code to detect quality issues
and share knowledge. Studies have investigated factors affecting
the popularity of repositories in social coding websites like
GitHub. However, as far as we know, no previous studies have
investigated the impact that code reviews could have on the
popularity of repositories on social coding websites. To make
a start in filling this gap, we analysed 117 DHIS2 GitHub
repositories to gather empirical evidence about the distribution
of code reviews in these repositories, as well as the relationship
between code review and the popularity of DHIS2 repositories
on GitHub. We found the presence of minimal code review in
DHIS2 repositories. Moreover, code review was generally found
to affect the popularity of DHIS2 repositories on GitHub.

Index Terms—Code review, Source Code Popularity, Open
Source Software, District Health Information Software, DHIS2

I. INTRODUCTION

The DHIS2 [1] is an open-source software currently used by
more than 60 countries across the world (mostly in Africa and
the developing world) [2, 3] to collect, analyse and visualise
routine health data across the country, to inform planning,
policy and decision making. In Tanzania, for example, the
DHIS2 has been endorsed by the health ministry as one of the
official sources of government health data. DHIS2 has evolved
over time to cover data needs of various stakeholders, even
beyond the health context [1, 4].

The DHIS2 is developed and maintained by the Health
Information System Programme at the University of Oslo [3,
5], but it also attracts global contributions, especially from de-
velopers responsible for maintaining country-specific DHIS2
instances. Given its wide use in low-and-middle-income coun-
tries, it is important to study the DHIS2 development pro-
cesses, to uncover lessons that could contribute to its continu-
ous improvement and sustainability. Most of previous studies
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on DHIS2 have focused on social and political factors affecting
its adoption in different countries (e.g., [6]–[8]). But the
software engineering aspects of the DHIS2 have not been
widely studied.

Code review is the process in which one developer’s code
is analysed by peers to detect and correct quality issues
and arrive at common code understanding [9]–[15]. Different
from the traditional rigorous formal code inspections, modern
code review adopts a lightweight review process in which
developers can interact and exchange comments about written
code [10, 16]. Moreover, factors that affect the popularity of
code repositories on social coding websites have been studied
[17]–[20].

However, to the best of our knowledge, previous studies
have not attempted to understand the impact that code review
can have on the popularity of repositories in social coding
websites like GitHub. To make a start in filling this gap,
we analysed 117 public DHIS2 repositories on GitHub, to
understand the prevalence of code reviews amongst DHIS2
repositories on GitHub, and the impact of code reviews on
the popularity of DHIS2 repositories on GitHub. We found
the presence of minimal code review activity in DHIS2 repos-
itories, and minimal evidence of code improvement based on
code review. Moreover, code review was generally found to
affect the popularity of DHIS2 repositories on GitHub. We,
thus, contribute to the literature on how code reviews are
distributed in Open Source Software (OSS) systems, and to
the understanding of the relationship between code reviews
and the popularity of code repositories.

II. RELATED WORK

Importance of code reviews in source code repositories:
Code review is an important aspect in software development–it
is employed by developers in both open-source and proprietary
settings, and it involves the review of developers’ code by
peers. McIntosh et al. [9] provide evidence that code review
reduces the number of bugs detected after release as long
as the code review coverage is adequate and there is good
participation of team members–code authors and reviewers–in
the code review process. Hundhausen et al. [21] conducted a



study to understand the impact of code reviews on student
learning and soft skills. Their results revealed that code
reviews can benefit both source code authors and reviewers
through knowledge exchange. Other authors have shown that
code review improves collaboration among the team because
it develops collective source code authorship [14, 22].

Empirical distribution of code reviews in source code
repositories: Studies investigating different aspects of code
reviews have used several datasets that can shed light on the
prevalence of code reviews in source code repositories. Baysal
et al. [23] performed an empirical study of the WebKit code
review process by focusing on non-technical factors such as
priority, patch size and component size, as well as organisa-
tional and personal dimensions (experience of patch writer,
reviewer load and activity). Data extracted from WebCore
were 10,012 patches that contained file changes and that had
been reviewed. Their findings provide empirical evidence that
personal and organizational factors have a significant influence
in the code review process regarding the review timeliness as
well as the chance of patch acceptance.

Thongtanunam et al. [16] empirically investigated the chal-
lenge of allocating appropriate reviewers to code, and the im-
pact of reviewer allocation problem on code review time. Four
open-source projects namely Android Open Source Project,
Qt, OpenStack and LibreOffice projects were used in their
study. They manually examined 7,597 comments from 1,461
reviewed samples; and then 42,045 reviews were examined
using file location-based code-reviewer recommendation tool
of four open software systems. The results show that the time
to review and approve code changes takes longer but can be
reduced with tools support helping developers to assign code
to appropriate code reviewers and hence speed up the code
review process.
In another study, Thongtanunam et al. [10] investigated the
influence of modern code review in clean and defective source
code files. Data was collected from Qt open source project, and
11,736 reviews of changes to 24, 486 files were empirically
studied. The findings show that thorough code review might
reduce the probability of future defects.

Popularity of open source repositories and software
applications: Zhu et al. [17] studied the frequency of folders
used by 140,000 GitHub projects, and found that the use
of standard folders (e.g. test, doc, examples) increase the
probability of the code to be forked and therefore may have
an impact on project source code popularity. Borges et al. [18]
investigated the popularity of the GitHub repositories and dis-
covered that application domains and programming language
influence the number of stars of GitHub projects. Moreover,
the study revealed that repositories owned by organisations
are more popular than individuals’ repositories, and that forks
influence the number of stars on repositories.

Lu et et al. [19] mined a taxonomy of 108 features of
9824 apps from Wandoujia–a Chinese Android App store,
and found that user rating and downloads were related to
apps popularity. Businge et al. [20] examined how social and
technical factors mined from Github and Google Play store

relate to Apps popularity, and discovered that both social and
technical factors significantly describe App popularity. They,
however, found that the combination of technical and social
factors have small effect on the popularity of Apps on Google
Play.

Research gap: To the best of our knowledge, no previ-
ous studies have investigated the relationship between code
reviews and the popularity of repositories on social coding
websites like GitHub.

III. RESEARCH DESIGN

A. Dependent and Independent Variables

Dependent Variables: Several metrics for measuring the
popularity of source code repositories have been proposed
in the literature [18, 20, 24]. To make a start in exploring
the relationship between code reviews and the popularity of
source code repositories, in the present study, we chose to
use the following three metrics to measure the popularity of
DHIS2 repositories on GitHub, all of which have been used by
previous studies [20, 24] to measure the popularity of software
repositories on GitHub:

• Forks: This measures the total number of forks accumu-
lated by a repository on GitHub. In GitHub and other
social coding websites, if a developer wants to to develop
on top of a particular repository, they often fork it and
start a new development line. If they discover and fix
bugs in the repository, or add new functionality to that
repository, they may wish to contribute back to the
main repository through Pull Request or issue reporting,
thereby contributing to strengthening the main repository
[20]. A highly forked repository indicates strong interest
by developers beyond its main development line, and
so stands good chances of sustainability, especially if
forking developers contribute back [20, 25]. The opposite
is also true–a less forked repository is less popular among
developers in the social coding community.

• Active Forks: This represents forks with at least one
commit since the forking date [20]. A higher number of
commits on an Active Fork means that developers are
actively working on the fork, and could potentially con-
tribute back to (and hence improve) the main repository.
Lower numbers of commits could suggest that the fork
has been abandoned, for various reasons, some of which
could be quality related.

• Stars: If developers on a social coding website like a
repository, they will sometimes star it to indicate interest
and/or how useful the repository was to them [24]. While
more stars could indicate strong interest, fewer stars could
indicate little interest in the repository by the social
coding developer community.

Independent Variables: We devised three metrics to quan-
tify the extent of code review in a particular repository:

• Total Comments: This represents the total number of
code review comments in a particular repository. It is
similar to Discussion Length [10, 26, 27]. Whereas more

2



comments on different commits would indicate that de-
velopers discuss the contributions by various members
to identify areas of improvement, little to no comment
would suggest that developers do not discuss code from
various members, and that could lead to more bugs and
issues, negatively impacting the quality of code in a
repository in the long run.

• Instances of Code Review: Number of code fragments
involved in code review. In this context, a fragment could
be a line, statement, block, method, class, Pull Request,
etc. Higher values of review instances indicate that more
code fragments in a repository have been reviewed, while
lower values of review instances suggest that large chunks
of code in a repository have not been reviewed, and that
could negatively impact the quality of a repository [10,
28].

• Instances of Effective Code Review: Number of code re-
view instances in which the review feedback was effected
by code authors. Because not all recommendations made
during code reviews get implemented by developers of the
reviewed code, it is good to discriminate between reviews
that were effected and reviews that were not effected.
Higher numbers of effective code review instances could
lead to code improvement.

• SLOC: Repository size in terms of lines of code. We use
SLOC as a control variable, because code repositories of
different sizes are likely to have different numbers of code
review comments, code review instances, and effective
code review instances.

• Commits: Number of commits on a master branch1. This
is also used as a control variable because code review
is often done on specific commits, and so repositories
with higher numbers of commits are likely to have more
evidence of code review activity than repositories with
lower numbers of commits.

B. Data Collection

Data for this study were extracted from public DHIS2
GitHub repositories, under the dhis2 account on Github2. Our
analysis covers the state of the repositories up to and including
20th March, 2020; 142 public repositories were part of the
dhis2 GitHub account by that date. Similar to the work of
Businge et al. [20], the GitHub REST API3 was used to extract
information for code review and popularity metrics discussed
in section III-A, and cloc4 was used to determine SLOC for
each repository.

Starting with an initial list of 142 repositories, 25 reposito-
ries were excluded from further analyses based on the follow-
ing five criteria (the number of repositories removed based on
a particular criteria are shown in brackets): One, repositories

1While code review can be done on any branch, we decided to focus on
master branch because, for most development teams, it is unlikely to merge
a feature branch to master without code review.

2https://github.com/dhis2/
3https://developer.github.com/v3/
4https://GitHub.com/AlDanial/cloc

with only database files, as well as repositories that were
only meant for archiving of source code and other information
about various DHIS2 projects (2). Such repositories are likely
to have no the kind of developer activity we were interested
in, and manual analysis confirmed this intuition. Two, reposi-
tories created only for training purposes (5). Their removal
aimed to minimise the possibility of biasing results with
trivial demonstration projects. Because training/demonstration
repositories are often created to serve short term knowledge
sharing purposes, one would not expect them to have the kind
of code review rigour this study was interested in. Three,
repositories with less than 5 commits on a master branch (11).
Manual analysis of the branches of such repositories revealed
that they also resembled trivial projects in criteria two. Four,
repositories which were just about documenting acceptable
GitHub practices for DHIS2 developers (1). Five, repositories
in which cloc was unable to compute values for SLOC (6).
This left us with 117 repositories which were subjected to
further analysis. The results reported hereafter are based on
this collection of 117 repositories.

For each of the 117 repositories, we conducted manual
analysis of comments in code in order to get values for
the three code review metrics introduced in section III-A.
For a particular repository, the value of Total Comments was
obtained from the number of all the comments returned by
the GitHub REST API. To get the value of Instances of Code
Review, we manually analysed the comments to identify the
number of different code fragments covered by the review.

In modern code review processes, code authors can address
reviews by responding to comments or producing new versions
of code that take proposed changes into account [9]. We
restricted our measure of code review effectiveness to the
instances of code where authors responded to comments made
on their code, by clarifying their position to the persuasion of
reviewers or reporting that issues raised in the review had been
fixed. Thus, to get the value of Instances of Effective Code
Review for a particular repository, we counted the number of
reviewed code fragments in which authors of the reviewed
fragments either accepted the reviews and agreed to make
changes on their code, or had persuaded reviewers to agree
with initial design decisions, or said explicitly in comments
that they had made changes in code based on review feedback.
Code review not only enables developers to receive feedback
about their code, but also it enables knowledge sharing among
team members [14] where various decisions made by individ-
ual developers can be debated, and reaching consensus in such
debates could increase code ownership across team members
[21, 22], adding to quality and long term sustainability of
the software. We, therefore, also count a review in which
a reviewer is persuaded by an author of the code to be an
effective instance of code review.

C. Model Building

We constructed multiple linear regression models to un-
derstand if there is a relationship between our independent
variables (code reviews aspects) and the dependent variables
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(popularity of DHIS2 repositories on GitHub). A multiple
linear regression model takes the form y = β0 + β1x1 +
β2x2 + ...+ βnxn, where y is a dependent variable and every
xi represents a particular independent variable. Because both
the present work and the work of McIntosh et al. [9] aimed
at understanding the relationship between some code review
facets and some dependent variables, we adapted the model
building approach used by McIntosh et al. [9]. Skewness tests
revealed that the values for all our variables were highly
skewed5, and so we performed log(x+1) transformation on
all our variables, to minimise the effect of outliers, stabilise
variance and enhance model fit.

To minimise multicollinearity, we used Spearman rank cor-
relation coefficient (ρ) to test for highly correlated independent
variables. Spearman rank correlation was used because it is
insensitive to not-normally-distributed data. Similar to the
work of McIntosh et al. [9], | ρ | > 0.7 was used to detect
highly correlated variable pairs and, if a variable pair was
found to be highly correlated, only one of a pair was included
in a model. Based on this process, we remained with the
following three independent variables which are the ones we
used to construct the model: Commits, Total Comments, and
Effective Instances.

Moreover, the models built out of the remaining three
variables were also checked for multicollinearity using the
Variance Inflation Factor (VIF). In particular, we computed
a VIF value for each independent variable used in model
construction. While a VIF value of 1 suggests that a variable
is not correlated with others, a VIF > 1 indicates the variance
inflation ratio captured by the model as a result of collinearity.
Similar to McIntosh et al. [9], we use five as a VIF threshold,
and all the three variables in the models were found to have
VIF values less than five, and so there was no further removal
of any variable.

IV. RESULTS AND DISCUSSION

A. Descriptive statistics for the studied DHIS2 repositories

Table I shows the descriptive statistics of the DHIS2 repos-
itories we analysed. For each variable, the mean is greater
than the median, indicating that all the variables are positively
skewed. Moreover, the statistics in Table I indicate that a lot
of the analysed repositories were of sizeable lines of code and
number of commits. As well, apart from displaying evidence
of generally minimal code review, a fairly large number of
the analysed repositories had been forked and “stared” several
times.

Different DHIS2 repositories offer different functionalities.
The majority (83) of the repositories we analysed focused
on supporting the work of DHIS2 developers through such
things as providing tools for developing Android mobile apps
for use on the DHIS2 platform6, User Interface design tools
for DHIS2 apps7, and other functions such as facilitating data

5https://rpubs.com/marvinlemos/log-transformation
6https://github.com/dhis2/dhis2-android-sdk.git
7https://github.com/dhis2/ui-forms.git

TABLE I
DESCRIPTIVE STATISTICS OF THE DHIS2 REPOSITORIES INVOLVED IN

THE ANALYSIS

S/n Metric Min First
Quartile

Median Mean Thrid
Quartile

Max

1 SLOC 9 688 2308 22193 10683 648884

2 Commits 5 34 134 429.8 453 9367

3 Total Comments 0 0 0 0.8205 0 29

4 Review Instances 0 0 0 0.5897 0 22

5 Effective Instances 0 0 0 0.2222 0 7

6 Forks 0 0 2 6.667 5 173

7 Active Forks 0 0 1 1.949 2 18

8 Stars 0 0 1 4.248 3 156

pre-processing8 before generating a variety of reports required
by end users. Another category of the analysed repositories
(25) consists of apps for enabling end users to perform some
functions on the DHIS2 platform. DHIS2 is mainly organised
as a collection of apps that enable users to perform various
tasks over the platform–for example, data entry9, quality
checks10, reports generation, data visualisations, data analysis
with Pivot Tables11, GIS Maps, and many more. Finally, 9 of
the repositories we analysed combined both developer support
and end-user application functions.

B. Empirical distribution of code reviews in DHIS2 reposito-
ries

Table II shows the distribution of code reviews across the
analysed DHIS2 repositories. Based on these results, generally,
only a fifth of the repositories we analysed had evidence
of code reviews. Furthermore, out of all code instances that
were found to have been reviewed, in only 37.68% of those
instances did the review lead to code improvement.
Figure 1 shows the distribution of reviews in the DHIS2
reviewed code. It can be seen that majority of DHIS2 reposi-
tories with evidence of code reviews have less than five code
review comments. Also, in most repositories with evidence of
code review, the number of instances of code involved in the
review is less than five. Moreover, majority of effective code
review instances are less than five, implying that most of the
code review did not lead to code improvement.

These results, in general, suggest that only a very small
proportion of DHIS2 code in public repositories is reviewed.
However, it could well be that, generally, DHIS2 code review-
ers do not comment on code if they have nothing important
to say about it. That could hinder the measure of code
review activity based on the availability of comments in code.
Nevertheless, further investigation into how DHIS2 developers
approach code review in practice could shed more light on
this. Also, the possible reasons for lack of evidence of code
improvement based code reviews can be related to the work of
Bacchelli and Bird [14], in which it was empirically observed

8https://github.com/dhis2/usage-analytics-app.git
9https://github.com/dhis2/dhis2-android-dataentry.git
10https://github.com/dhis2/who-data-quality-app.git
11https://github.com/dhis2/pivot-tables-app.git
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TABLE II
DISTRIBUTION OF CODE REVIEWS IN DHIS2 REPOSITORIES

Item Description Amount

A Number of repositories analysed 117

B Number of repositories with evidence of code reviews 24

C Number of repositories without evidence code reviews 93

D Number of code review comments across the analysed repositories 96

E Number of instances of code involved in the review, across the analysed repositories 69

F Number of effective code reviews, out of code instances involved in review 26

G Percentage of repositories with evidence of code reviews (B*100/A) 20.51%

H Percentage of effective code review instances (F*100/E) 37.68%

Fig. 1. Distribution of reviews in DHIS2 reviewed code

that understanding of the reasons for code change and the
code itself are key aspects in the code review process for
both source code authors and reviewers. If reviewers do not
understand why certain changes were made in code, it may
be hard for them to review it properly; similarly, if developers
lack clarity about the changes requested by reviewers, it may
be difficult for them to improve their code based on code
reviews. However, measuring the effectiveness of code reviews
by analysing later commits by developers of reviewed code,
and studying the actual DHIS2 code review workflow, could
give more insights into whether code review lead to code
improvement in DHIS2 repositories.

C. Impact of code reviews on the popularity of repositories
on GitHub

Table III shows the relationship between code review and
popularity of DHIS2 repositories on GitHub. The leftmost col-
umn represents the dependent variables–Forks, Active Forks,
and Stars–which are the metrics we used to represent the pop-
ularity of repositories on GitHub. Columns 2 through 6 from

the left represent various information about a particular linear
model, ranging from independent variables for a particular
model (column 2 from left) to p-values and their significance
marks (columns 5 and 6 respectively) for different independent
variables in a model. The last four columns on the right
(column 7 through 10) represent various information about
the Analysis of Variance for the different model variables.
A different model was built for each of the three dependent
variables, and so the results in Table III are for three different
models. We next present the results for each of the three
models.

1) Relationship between code review in DHIS2 repositories
and the number of GitHub forks: With reference to Table III,
the model in which the dependent variable is Forks has 0.5346
and 0.5222 as values of Multiple R-squared and Adjusted R-
squared respectively, suggesting that it (the model) accounts
for 53.5% of the dependent variable variance. This average
value of variance in dependent variable could be reflective
of the diversity in repository sizes, despite the fact that
values of the dependent and independent variables were all
extracted from GitHub and all the repositories involved in the
present study were owned by the DHIS2 developer community.
The t-values, p-values and Sum Sq suggest that only the
number of commits and the number of code review comments
significantly affected the number of forks amongst DHIS2
repositories on GitHub. This implies that sizeable DHIS2
repositories with reviewed code stand good chances of evoking
the interest of developers on GitHub, who might fork and
extend the code, with a potential of contributing back. It
could also mean that, because repositories with unreviewed
(or poorly reviewed) code are prone to more quality issues
[9, 10], developers in social coding websites like GitHub
tend to shy away from forking and extending them. Future
work might conduct deep investigation into this conjecture.
However, we found no direct link between the number of
instances in which the recommendations of the code review
process are implemented and the number of forks for DHIS2
repositories in GitHub.
Additionally, a positive sign on the the coefficient of Total
Comments suggests that DHIS2 repositories with higher num-
bers of code review comments are most likely to be forked.
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TABLE III
RELATIONSHIP BETWEEN CODE REVIEW AND POPULARITY OF DHIS2 REPOSITORIES ON GITHUB

Linear Model Analysis of Variance

Dependent Variable Independent
Variables

Estimate t-value p-value Sum Sq F-value p-value

Forks (Intercept) -0.3982 -3.550 0.000563 ***

Commits 0.4000 7.296 4.39e-11 *** 14.13 116.561 < 2e-16 ***

Total Comments 0.7463 3.021 0.003118 ** 1.389 11.454 0.000981 ***

Effective Instances -0.5539 -1.331 0.185937 0.215 1.771 0.185937

Multiple R-squared: 0.5346, Adjusted R-squared: 0.5222

Active Forks (Intercept) -0.2192 -2.688 0.008275 **

Commits 0.2325 5.834 5.24e-08 *** 5.282 82.479 4.06e-15 ***

Total Comments 0.6193 3.449 0.000793 *** 0.648 10.112 0.001900 **

Effective Instances -0.6029 -1.993 0.048698 * 0.254 3.971 0.048700 *

Multiple R-squared: 0.4608, Adjusted R-squared: 0.4465

Stars (Intercept) -0.4710 -5.210 8.57e-07 ***

Commits 0.3987 9.022 5.57e-15 *** 11.584 147.161 < 2e-16 ***

Total Comments 0.5483 2.754 0.00686 ** 0.318 4.038 0.0469 *

Effective Instances -0.6570 -1.959 0.0526 . 0.302 3.837 0.0526 .

Multiple R-squared: 0.5784, Adjusted R-squared: 0.5672

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This is especially possible in situations where code review
improves the quality of code, adding to its comprehensibility,
extensibility, and maintainability [9, 10].

2) Relationship between code review in DHIS2 repositories
and the number of active forks on GitHub: Focusing on the
results for the second dependent variable (Active Forks) in
Table III, we notice that the model has 0.4608 as the value
of Multiple R-squared, and 0.4465 as the value of Adjusted
R-squared. This means that the model can explain only 46.1%
of the dependent variable variance. This relatively low value
of Multiple R-squared suggests that, though the values of
both independent and dependent variables were taken from
one source, GitHub, developers of original repositories and
developers who maintained active forks of the original repos-
itories might have little or no interaction. Moreover, similar
to Forks, increasing the number of commits and the number
of code review comments positively impacts the number of
Active Forks. This could as well be attributed to the fact that
good code review rigor produces good quality software that is
easy to understand, maintain and extend [9, 10], which could,
in turn, motivate open source developers to continue working
on the repositories they fork.

However, the negative sign on the coefficient of Effective
Instances suggests that the decrease in Effective Instances is
associated with the increase in Active Forks. While it calls for
further investigation, this result could imply that, sometimes,
spending more time implementing the recommendations made
during code review could reduce the activity of forks for
DHIS2 repositories in GitHub. In GitHub, developers fork
a repository, work on its code, and then contribute back to

an original repository through Pull Requests [20]. Because
developers of an original repository reserve the right to accept
or reject any Pull Request sent from a forked repository, more
rejections could demoralise potential contributors from work-
ing on the repositories they fork. Because most contributions
to DHIS2 are overseen by a particular main development node,
it could be that new Pull Requests do not easily survive the
review process. This is understandable given the sensitivity of
the DHIS2 software and the scale of its coverage, but more
rejections or delayed approvals for Pull Requests could scare
away some contributions of good potential to the long-term
sustainability of the software [29].

3) Relationship between code review in DHIS2 repositories
and the number of stars on GitHub: Based on the results in
Table III, when Stars was used as the dependent variable, the
model produced 0.5784 as the value of Multiple R-squared,
and 0.5672 as the value of Adjusted R-squared, implying that
the model represents 57.8% of the variance in the dependent
variable. This relatively high value of Multiple R-squared, in
addition to the diversity of repository sizes, can be linked to
the fact that the values of all independent variables and the
dependent variable were all extracted from GitHub, and from
the repositories owned by the same organisation or network.
Furthermore, based on t-values, p-values and Sum Sq, all
the three independent variables in the model–Commits, Total
Comments, and Effective Instances–significantly influenced the
number of stars on DHIS2 GitHub repositories.

On the one hand, the positive signs on the coefficients of
Commits and Total Comments suggest that DHIS2 GitHub
repositories with higher numbers of commits and code review
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comments are likely to attract more stars. On the other hand,
the negative sign on the coefficient of Effective Instances
suggests that DHIS2 repositories in which higher numbers
of reviews are effected have a lower number of stars. Two
clues could be related to this result. First, as stated before,
spending more time effecting code review recommendations
can delay code from reaching developers who want it the most,
especially in an open source environment where development
is more or less like a marathon in which meeting immediate
customer requirements is of paramount importance. In such
an environment, developers are likely to star repositories that
attend their immediate needs, even if they have unreviewed
and/or “low quality” code. Second, it could be that effecting
reviews can sometimes produce poor-quality code [27], and
this can in turn reduce the number of stars that developers
give to a repository.

V. THREATS TO VALIDITY

The following are the threats to the validity of the results
in the present study, as well as their mitigation strategies.

A. Internal Validity

We relied on public DHIS2 repositories on GitHub, so that
we might have missed other private DHIS2 repositories with
reviewed code. However, we observed that DHIS2 repositories
on GitHub are frequently updated, and so public repositories
stand good chances of being a true reflection of what is
actually practiced by DHIS2 developers. Also, focusing on
public GitHub repositories enabled us to study DHIS2 code
review practices in a natural environment, without developer
intervention, which might have biased the results. Neverthe-
less, a follow up study with DHIS2 developers, accessing even
private repositories (if any) could generate more richer insights
on DHIS2 code review practices.

B. Construct Validity

The results of the present study can suffer two main
construct validity threats. First, the reliance on code authors’
comments to measure code review effectiveness (section III-B)
might have missed effective instances of code review where
developers had decided to silently implement code review
recommendations without responding to comments made on
their code. But, even so, if developers do not react to comments
made on their code, it can be difficult to determine if they
saw and worked on the comments, in the first place. This
is especially true in a context like the one in the present
study where there were no evidence of systematic tracking
of code review knowledge base which, among other things,
could help researchers and practitioners to easily determine
which part of code was reviewed, by who, and whether or
not code review recommendations were effected. As such,
focusing on developers’ engagement with comments made on
their code can be a good proxy for measuring whether or
not the comments made during code review were effected.
Nevertheless, future work can incorporate new commits from

a code author when determining if the comments made during
code review helped improve the code.

Second, we had limited understanding of the actual DHIS2
code review practices, and so it is possible that we expected
comments even on parts of code where DHIS2 developers
were, in practice, expected to remain silent. However, even
if that was the case, still, it could hardly justify the fact
that almost 80% of the repositories of focus in our study
did not have a single code review comment (see Table II).
Thus, relying on available comments was the best pragmatic
alternative to evidence the practice of code review amongst
DHIS2 developer community. Nonetheless, in the future, it
might be good to have a measure of code review activity that
is informed by actual practices of the development team.

C. External Validity

Since we focused on only public DHIS2 projects on GitHub,
the findings of our study might be hardly generalisable to all
DHIS2 repositories or to other open source systems in GitHub
and other social coding websites. To mitigate the effects of
this, we analysed 117 DHIS2 repositories (section III-B) of
various sizes which, we believe, represent a large proportion
of all repositories maintained by the DHIS2 community of
developers. Furthermore, since the public repositories we
analysed are open to all members of the GitHub community,
and are diverse in terms of aspects like size and purpose,
they represent a typical Open Source Software ecosystem.
However, to corroborate the insights from the present study,
in the future, it would be good to conduct a similar study
on OSS projects owned and maintained by diverse developer
communities.

D. Conclusion Validity

The results in the present study are based on a dataset of
117 public DHIS2 GitHub repositories which were carefully
selected based on the inclusion and exclusion criteria presented
in section III-B. In addition, all the study variables were
subjected to rigorous statistical analysis (section III-C) before
attempting to draw conclusions from them. That scrutiny, in
our opinion, minimised the threats to conclusion validity even
more.

VI. CONCLUSIONS

DHIS2 is currently in use in more than 60 countries across
the world to collect, analyse and visualise case-based and
aggregated routine health data. Most of its use is in the
developing world, including in Africa. Given the role it plays
in most countries, it is important to study various aspects of
its development, adoption, use, and sustainability. Previous
studies on DHIS2 have concentrated on political, social, cul-
tural, and organisational factors affecting its adoption and use.
However, the software engineering aspects of DHIS2 have not
been widely studied.

In this paper, we have analysed 117 DHIS2 repositories on
GitHub to gather empirical evidence about the distribution of
code reviews in these repositories, as well as the relationship
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between code review and the popularity of DHIS2 code
repositories on GitHub. Results of the study revealed the
presence of minimal code review activity in DHIS2 GitHub
repositories, as well as minimal evidence of code improvement
based on code review. Also, code reviews were found to affect
the popularity of DHIS2 repositories on GitHub.

Part of our future work is to investigate the relationship
between code reviews and the popularity of repositories using
a wide range of code review and popularity metrics, and
on repositories owned by different developer communities,
to generate insights that could inform software teams when
planning to increase popularity and impact of their repositories
on social coding websites like GitHub.
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