
Maintaining Behaviour Driven Development
Specifications: Challenges and Opportunities

Leonard Peter Binamungu, Suzanne M. Embury, and Nikolaos Konstantinou
School of Computer Science, University of Manchester, Manchester, UK

{leonardpeter.binamungu,suzanne.m.embury,nikolaos.konstantinou}@manchester.ac.uk

Abstract—In Behaviour-Driven Development (BDD) the be-
haviour of a software system is specified as a set of example
interactions with the system using a “Given-When-Then” struc-
ture. These examples are expressed in high level domain-specific
terms, and are executable. They thus act both as a specification
of requirements and as tests that can verify whether the current
system implementation provides the desired behaviour or not. This
approach has many advantages but also presents some problems.
When the number of examples grows, BDD specifications can
become costly to maintain and extend. Some teams find that
parts of the system are effectively frozen due to the challenges
of finding and modifying the examples associated with them. We
surveyed 75 BDD practitioners from 26 countries to understand
the extent of BDD use, its benefits and challenges, and specifically
the challenges of maintaining BDD specifications in practice. We
found that BDD is in active use amongst respondents, and that the
use of domain specific terms, improving communication among
stakeholders, the executable nature of BDD specifications, and
facilitating comprehension of code intentions are the main benefits
of BDD. The results also showed that BDD specifications suffer
the same maintenance challenges found in automated test suites
more generally. We map the survey results to the literature, and
propose 10 research opportunities in this area.

Index Terms—behaviour-driven development, test suite mainte-
nance, test suite evolution

I. INTRODUCTION

In Behaviour-Driven Development (BDD), the behaviour of
the required software is given as a collection of example inter-
actions with the system, expressed using natural language sen-
tences organised around a “Given-When-Then” structure [1],
[2], [3]. This gives a specification that is expressed in non-
technical, domain-specific terms, that should be readable and
comprehensible by end-users. Importantly, the specification is
also executable, thanks to “glue code” that links the natural
language sentences to the code that is being built. Thus, the
set of examples acts both as a high-level specification of the
requirements for the software and as a suite of acceptance tests
that can verify whether the current implementation meets the
specification or not.

Like many other agile practices, the adoption and continued
use of BDD is affected by organizational, people, process and
technical factors discussed by Senapathi and Srinivasan [4],
Vijayasarathy and Turk [5], Senapathi and Drury-Grogan [6],
and Abdalhamid and Mishra [7]. As the technique enters its
second decade of use, a considerable body of experience has
been built up by practitioners, and lessons have been learnt
about both the strengths and the challenges involved in its

practical application. Anecdotal evidence from the software
engineers we have worked with suggest that the maintenance
challenges, in particular, can be severe, and are leading some
teams to drop the technique and to return to technology-facing
automated testing to play the role of their BDD specifications.
However, to the best of our knowledge, no empirical studies
have been undertaken by the academic community to capture
these lessons and to understand how research might be able to
address some of the problems encountered by users of large
BDD specifications over the long term.

To make a start in filling this gap, we surveyed 75 BDD
practitioners from 26 countries across the world on their
experiences of using BDD. We collected both quantitative and
qualitative data that gave us answers to the following research
questions (RQs):

• RQ1: Is BDD in a considerable active use in industry at
present?

• RQ2: What are the perceived benefits and challenges
involved in using BDD?

• RQ3: To what extent are maintenance challenges promi-
nent amongst the issues raised by users (and former users)
of BDD, and what form do they take?

In addition to these more general questions, we wanted to test
our hypothesis that duplication in BDD specifications is hard
to detect and a cause of many of the maintenance challenges
we have heard reported anecdotally by software teams. We
therefore added a fourth research question to guide the design
of the survey:

• RQ4: To what extent is the discovery and management
of duplicates in BDD specifications seen as an unsolved
problem by practitioners, and what techniques are being
employed to deal with it?

From the survey results, we found that BDD is in active use in
industry. Some respondent organizations use it on all projects,
while the majority of respondent organizations use it on only
some of the projects. Also, while a few previous practitioners
are not currently using it due to various challenges, some of
which are maintenance related, the majority of respondents
among currently active and non-active practitioners plan to
use BDD in the future as either a key tool on all projects or
as an optional tool on some projects. Respondents gave the
main benefits of BDD as the use of domain specific terms,
improving communication among stakeholders, the executable
nature of BDD specifications and facilitating comprehension

978-1-5386-4969-5/18 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

175



of code intention. While respondents cited changing the way
teams approach software development as the main downside of
BDD, a significant number of responses indicated that BDD
specifications suffer from the same maintenance challenges
found in automated test suites.

Despite the reported maintenance challenges, we are aware
of only the work of Suan [8] in this area. We conclude that
there is a scarcity of research to inform the development of
better tools to support the maintenance and evolution of BDD
specifications, and we propose 10 open research opportunities
in this area.

The paper is structured as follows: section II presents the
current state-of-the-art in general adoption, and use of agile
methods and BDD in particular; section III details the survey
design and gives the details of participants; section IV presents
the results of the study and the open research opportunities,
while section V discusses the significance of the results. Sec-
tion VI concludes.

II. RELATED WORK

Senpathi et al. used the Agile Usage Model to identify the
factors that affect the effective use of agile methods after they
have been adopted by organizations, and the impact of the adop-
tion [4]. In other work, Vijaysarathy et al. investigated reasons
why people and organizations adopt and use agile practices,
and the benefits and challenges that face development teams at
early stages of adoption of particular agile practices [5]. Various
summaries of the organizational, people, process and technical
factors that affect the adoption of agile methods can be found
in the literature [6], [7], [9], [10]. However, to the best of our
knowledge, no study has attempted to examine these factors in
the context of BDD.

The characteristics of BDD, the associated tools, and the
strengths and limitations of the existing tool support have been
summarized by Solis and Wang [11] and by Okolnychyi and
Fögen [12]. Mishra discusses the general pros and cons of
BDD [3] and Rahman and Gao highlight some of the main-
tenance challenges that teams might face when adapting BDD
tests to changing environments [13]. The feasibility of BDD in
practice and the ease with which people can learn and under-
stand Gherkin, the most commonly used BDD language [12],
was investigated by Rai [14]. Suan investigated techniques
for detecting duplicates in BDD specifications through text
similarity matching [8]. We found no published study that has
attempted to establish the maintenance challenges involved in
using BDD on projects in the long term.

III. RESEARCH METHOD

This section presents the survey design, the details of the
participants, and the data analysis approach.

A. Survey Design

To attract more responses and yet ensure that aspects of
interest are well captured, we designed a short web survey
with 18 questions. Of the 18 questions, 6 were single choice,
7 were multiple choice, and 5 required open-ended free-form

text responses. All single and multiple choice questions had an
“other(s)” option to allow respondents to report other important
information that might not have been well covered in the
choices we gave. More specifically, 7 questions were on the
the extent of BDD use; 5 questions sought to establish the
sizes of typical BDD specifications in industry, the challenges
presented by the presence of duplication in BDD specifications,
and how industry teams detect and manage duplication in BDD
specifications; 1 question sought to reveal any other noteworthy
issues about BDD from practitioners; and 5 questions were
on the demographics of the respondents. For brevity, we refer
readers to section IV where the specific survey questions and
the choice answers are discussed.

The survey was reviewed by a senior academic from our
school who has experience in doing survey research. It was
designed and deployed using SelectSurvey.NET1, an instance
of which is available for use on our university servers. Our
respondents took 5-10 minutes to complete the survey, and we
received responses over the period of more than 2 and a half
months from July 2017.

B. Respondents

Developers of BDD projects and other members of industry
agile teams who had ever used BDD, or were using BDD at the
time of our survey, were our targets. The survey was distributed
through a convenience sample of online agile discussion groups
and personal emails. Though it reduces generalizability of
findings, convenience sampling is appropriate when random
sampling is practically impossible [15], [16]. The survey was
accessed and completed through a web link. We also encour-
aged respondents to pass the survey on to others, and so some of
our respondents might have been recruited through snowballing.
A similar method of recruiting survey respondents was used by
Kochhar et al. [17], and Witschey et al. [16].

We began by posting the survey on on-line communities
where BDD topics are discussed. The following Google groups
were targeted: Behaviour Driven Development Google group,
Cucumber Google group, and BDD Security Google group.
After learning about the survey through one of these groups,
the Editor in Chief of BDD Addict2, a monthly newsletter about
BDD, included the survey in the July 2017 issue, in order to
reach a wider BDD community. The survey was also shared
with the following twitter communities: Agile Alliance, Agile
Connection, Agile For All, Scrum Alliance, Master Scrum,
RSpec—BDD for Ruby, and the twitter accounts for two of
the authors.

We further identified email addresses of contributors to BDD
projects on GitHub.com, and sent them personalized requests to
complete our survey. Relevant projects were identified using the
keywords “Behaviour Driven Development”, “Behavior Driven
Development”, and “BDD”; we extracted the public email
addresses of contributors from the resulting projects, up to
and including the 5th page (10 results per page). (We selected

1http://selectsurvey.net/
2https://www.specsolutions.eu/news/bddaddict/

176



Fig. 1. Distribution of respondents by continent

this limit after manual examination of the usefulness of email
addresses on later pages for a sample of projects). We also
searched for projects with keywords based on the names of the
tools mentioned in the survey: namely, Cucumber, FitNesse,
JBehave, Concordion, Spock, easyb, and Specflow. In total, 716
email addresses were identified and contacted about the survey.

Of the 566 people who viewed the survey, 82 began to
complete it out of whom 75 submitted usable responses to
the main questions. 11 out of the 13 (84.6%) main questions
(questions not focusing on respondents’ demographics) were
completed by all the 75 respondents. We used IP Address
Geographical Location Finder3 to identify the geographical
locations of respondents, and Fig. 1 shows the distribution of
respondents by continent.

The organizations of respondents were distributed as follows:
35% public, 63% private, 1% sole trader, and 1% did not say.
44 participants gave the role they held in their organization,
and most were in senior positions. However, the remaining 31
preferred not to state their roles, probably because we explicitly
stated that identifying information was optional. Table I shows
the distribution of job roles for the respondents. Additionally,
though not everyone stated their organization, we noted that
some respondents who specified their organizations came from
large, well known multinational organizations.

TABLE I
DISTRIBUTION OF JOB ROLES OF SURVEY RESPONDENTS

Role No. %

Software Engineers/Architects 20 26.7
Quality Assurance Engineers/Business Analysts 4 5.3
Team Lead/DevOps Tech Lead 10 13.3
Consultant 3 4.0
Chief Executive Officer (CEO) 2 2.7
Chief Technology Officer (CTO) 4 5.3
Researcher 1 1.3
Did not say 31 41.3

Total 75 100.0

3http://www.ipfingerprints.com/geolocation.php

Fig. 2. Extent of BDD use by type of organization

Fig. 3. Extent to which use of BDD is mandated by organisations

C. Data Analysis

We received a total of 82 responses. We removed 7 responses
in which respondents had completed only demographics data,
leaving 75 valid responses. To answer the research questions
introduced in section I, we plotted the charts to represent the
responses, and summarized the respondents’ comments.

IV. RESULTS

This section presents the extent of BDD use amongst the
BDD centric communities we surveyed, and the challenges they
face.

A. Extent of Active Use of BDD

1) Extent of BDD Use in Various Types of Organizations:
From the survey, we found that BDD is used more in private
organizations than in other types of organization (see Fig. 2).
Fig. 3 summarises responses as to whether BDD is a mandatory
or optional tool for organizations.

2) Tools Used by Industry Teams to Support BDD and
ATDD: Respondents use the tools in Fig. 4. Strictly speaking,
some of these are more properly termed Acceptance Test Driven
Development (ATDD) tools.

3) Plans to Use BDD in the Future: Almost half of the
respondents said that their organizations will use BDD as an
optional tool on some projects in the future, while more than
a quarter of the respondents said that it will be used as a key
tool on all projects. Fig. 5 summarizes the responses on planned
future BDD use.

177



Fig. 4. BDD Tools used by respondents

Fig. 5. Plans by organizations to use BDD in the future

B. Perceived Benefits and Challenges

1) Perceived Importance and Benefits of BDD: Fig. 6
presents the perceived importance of BDD use by the respon-
dents. The views given under “other” were:

• “Personally I find it very important, my clients though
have different opinions. Usually it requires a certain
collaboration within the organization which is hard to
establish. It is not the tool that is hard to use, but more
the people to get into this work flow.”

• “BDD enables teams to write standard tests that are more
expressive.”

Fig. 6. Perceived importance of BDD use

Respondents’ opinions on the benefits of BDD are presented
in Table II. As the results show, respondents value the commu-
nication aspects of BDD, but also the benefits to developers in
gaining early warning signals of problems.

TABLE II
BENEFITS AND CHALLENGES OF USING BDD

Benefits of BDD Rate (%)

Software specifications are expressed in domain-
specific terms, and thus can be easily understood
by end users

67

Improves communication between various project
stakeholders

61

Specifications can be executed to confirm correct-
ness or reveal problematic software behaviour(s)

52

Code intention can be easily understood by main-
tenance developers

50

Attention is paid to validation and proper handling
of data

24

Could produce better APIs since it emphasizes
writing testable code

28

Other 7

Challenges of BDD

Its use changes the team’s traditional approach to
software development, and that can be challenging

51

Its benefits are hard to quantify 35
It involves a steep learning curve 28
Other 21
It can lower team productivity 20

Under “other”, respondents listed the following additional
benefits:

• BDD offers an improved way of documenting the software
and the associated code:
– “Living documentation that evolves with the system over

time”
– “Documentation is a working code”

• Simplifies and enriches software testing activities:
– “Helps QA team to write tests without code implemen-

tation details”
– “Make possible fullstack tests, differently from unit

tests.”
– “Reusable, finite set of steps used by test developers”

• Improves software designs by facilitating domain knowl-
edge capture:
– “primarily a design tool → it enables us to gain clarity

about the domains at hand, especially at the seams”
2) Challenges Faced by BDD Practitioners: We wish to

state at the outset that: because of the strong emphasis on
collaboration among all project stakeholders, there is a thin
line between organizational, people, process and technical
challenges in the BDD workflow. However, in the present paper,
the separation should be self-evident, should it be important.

The challenges faced by BDD practitioners, according to the
respondents, are given in Table II. Respondents thought that
the most challenging part of BDD is that it changes the usual
approach to team software development. Under “other”, the
following challenges were mentioned:

178



• The emphasis on collaboration, an inherent part of a
correct BDD workflow, can be difficult and even ignored,
leading to later problems:
– “Needing to involve Business and final users”
– “It’s a simple concept but can be hard to get right. Many

people make the assumption it’s about test automation
and try to use like a scripting tool and the project ends
in failure”

– “it does not succeed at being legible to colleagues
outside of software engineering departments.”

– “Make other non-developers read tests. So far I have
used BDD for couple of years and even though idea
behind it [is] good, people who are not involved in
testing are also not interested in test cases no matter
how easy-to-read they are.”

• Lack of BDD coaching and improper application of the
BDD workflow:
– “As with other kinds of testing, the best way to learn

is from somebody who has experience. Thus just by
downloading a framework, reading a bit and trying, one
can produce tests which value is disputable.”

– “Danger of confusing the mechanics (automation, writ-
ten specifications) with the intention (knowledge shar-
ing, structured conversations, discovery of edge cases),
focusing too much on the former.”

– “Once the Gherkin syntax is well known, stakeholders
tend to skip ahead, reducing the benefits of the specifi-
cation workshop.”

– “Its hard to find someone who really understand what
should be tested by BDD therefore a bunch of develop-
ers have negative experience about it. Probably there is
no a comprehensive material on the internet that can
explain every aspect of BDD.”

– “requires design skills often absent or not valued”
– “Main issue when applying BDD is to find time to do

the Three Amigos workshop, it is not a tool issue but
more a people one.”

• Ensuring that BDD specifications are easy to comprehend,
execute and maintain:
– “All the usual challenges in getting automated testing

running and maintained”.
– “...Textual specs are too expensive to maintain long-

term”
– “BDD add unnecessary layer of maintaining specifica-

tion and make them still readable with clean code.”
– “BDD is often associated with slow suites. The diffi-

culty of managing duplication is proportional to that
slowness. Therefore, as BDD scales, in my opinion it is
crucial to find ways to run slow scenarios fast, either
by reducing their scope, or by running them against
multiple configurations of the system covered by the
scenarios.”

– “...the complexity of the test software needed to support
BDD is often as high as the software under test...”

Fig. 7. Number of scenarios in industry BDD projects

– “Some developers don’t like the duplication that can be
created with having BDD separate to unit tests. BDD
can also get out of hand and become far too technical
and indecipherable by users”

– “...tests were very brittle and manual QA types had
limited ability to investigate.”

C. Challenges of Maintaining BDD Specifications

1) Size of BDD Suites: To provide context for the main-
tenance challenges reported, we asked for information about
the typical sizes of the BDD suites used and managed by the
respondents. Clearly, the maintenance challenges reported are
likely to be of less significance if typical suites contain numbers
of scenarios (i.e., examples) that can be managed by hand.
Fig. 7 shows the typical size of the BDD suites the respondents
work with. It can be noted that, while the majority are relatively
small, a significant minority are considerably large to make
manual individual inspection of all scenarios a costly task.

2) Maintenance Challenges: As it can be noted from the
responses describing the general challenges of BDD, respon-
dents admitted that BDD suffers from the same kinds of
maintenance challenge associated with any current form of
automated testing. Specifically, the maintenance challenges as
presented earlier from the survey can be summarised as:

• Specifications can be hard to comprehend.
• It can be hard to locate sources of faults, especially in

large BDD suites.
• It can be difficult to change specifications for the purpose

or fault correction, accommodating new requirements, or
adapting them to new environment.

• Making slow suites run faster.
• The need to maintain BDD tests in addition to unit tests.
• Coping up with the possible complexity of BDD tools.
• Duplication detection in BDD specifications.
• Duplication management in BDD specifications.

D. Duplication in BDD Suites

We now present the maintenance challenges presented by
duplication in BDD suites, the extent at which duplication is
present in industry projects, and the current state of practice
in the detection and management of duplication in BDD
specifications, as reported by the survey respondents.

179



1) Problems of Duplication: 61% of the respondents held
the view that the presence of duplication in BDD specifications
can cause them to become difficult to extend and change
(leading potentially to frozen functionality). As well, while
nearly half of the respondents (49%) said that the presence
of duplication in BDD specifications can cause execution of
BDD suites to take longer to complete than necessary, 43%
thought that duplication can make it difficult to comprehend
specifications. Under “other” (7%), the following problems of
duplication in BDD suites were reported:

• The process of duplication detection and management can
change the desired software behaviour:
– “Over refactoring features and scenarios to avoid dupli-

cation causes the requirements and their understanding
to change from what the Product Owner wants.”

• Difficulty in comprehension and execution of specifica-
tions:
– “Contradicting specifications, if the duplication is not

a result of the same team/individual working on it.”
– “Duplication in specs is usually a sign of incompletely

or badly ‘factored’ behaviours, which can lead to overly
complicated specs and difficult to set up system state.”

• Necessitates changes in several places in the suite during
maintenance and evolution:
– “Changes required to be done in more than one place.

I miss some ‘include’ keyword.”
• It is hard to use existing duplicate detection and manage-

ment tools to detect and manage duplicates in specifica-
tions expressed in a natural language:
– “if the statements are in English prose basic refactoring

tools / copy paste detection / renaming are difficult to
catch and maintain.”

• BDD tests are end-to-end tests that are usually strongly
connected to their unit tests, and that makes the process
of detecting duplicate BDD tests difficult:
– “It’s hard to detect duplication between BDD specs and

unit-tests.”
• Difficulty in modelling how the scenarios are executed,

and the scenarios can be very slow and brittle:
– “...criteria can hold at one level and cascade down -

difficult to model *how* the scenarios are executed can
be very slow and brittle (e.g. web tests) - hexagonal
architecture please”

2) Presence of duplication: Fig. 8 summarizes responses
on the extent of the presence of duplication in the BDD
specifications.

3) Detection and Management of Duplication in BDD Spec-
ifications: We now present the current state of practice in
detecting and managing duplication in BDD specifications.

Fig. 9 relates the extent of duplication, suite size, and method
of duplication detection reported by the survey. The pie chart
in the same figure summarizes the different methods that are
used to detect and manage duplication.

Fig. 8. Presence of duplication in the BDD specifications of industry teams

Fig. 9. Extent of duplication, size of BDD specs, and duplication detection
method

Some respondents had the following additional thoughts on
how they approach duplication detection and management:

• “We are looking at ways to automate at least part of the
process of finding duplicates”

• “Treat the test code much like the production code.
Refactor frequently to control duplication and make test
intentions clear”

• “Pay attention to SRP during or after collaborative spec-
ification.”

180



Fig. 10. Duplication detection methods among active and non-active BDD
practitioners

• “We organise the specifications specifically to prevent this.
It would be one of the worst things to happen.”

• “Using jbehave with ‘givenScenario’, we are able to
reduce duplication by reusing steps.”

Fig. 10 shows the distribution of duplication detection meth-
ods among active and non-active BDD practitioners. An active
practitioner in this regard is the one who uses BDD in either
all projects, or some projects, or a few pilot projects. Almost
60% of the respondents were active BDD practitioners who
either: perform manual inspection to detect duplication in their
BDD specifications and thereafter decide on how to manage
it, or have decided to live with it, given the complexity of the
detection and management process, or are currently looking for
an automated solution to detect and manage it.

E. Opportunities

Table III presents the research opportunities we derived from
the challenges reported in the survey results, and maps the
respective opportunities to the existing literature.

V. DISCUSSION AND THREATS TO VALIDITY

We now discuss the significance of the results, providing
answers to the research questions mentioned in section I. We
also present the threats to validity of our results, and discuss
the mitigation strategies.

RQ1: On whether BDD is in active use: To explain the
activeness of BDD use in industry, we use the theory of vertical
(or explicit) and horizontal (or implicit) use by Iivari et al. [49],
[50]. Vertical use expresses the degree of rigour with which
a particular method is followed, eg., strict adherence to the
method’s documentation or partial adherence. Horizontal use,
on the other hand, refers to the use of a method across multiple
teams and projects in an organization after initial adoption,
learning, and internalization. With respect to horizontal use,
for a range of organization types, we pay attention to: whether
it is used on all projects, some projects, a few pilot projects, or

not used at all; whether it is used as a mandatory or optional
tool; and plans by organizations to use it in the future. As well,
we use vertical use to discuss issues reported by practitioners
that are related to conformity or non-conformity with the BDD
workflow.

We note from the survey results that BDD is in active use
in the industry. We learn from Fig. 2 and Fig. 3 that there is
a substantial level of horizontal use, with some organizations
using it on all projects, while others use it on some projects. Ad-
ditionally, while there are organizations (20% of respondents)
that have made BDD a mandatory tool, a significant proportion
(61% of respondents) use it as an optional tool. This is to be
expected as most organisations would use different software
development techniques, for various reasons, including the
dictates of a particular project. We can also expect that some
organizations might use selected agile techniques, but not be
committed users of every agile practice. We note, however,
that there are vertical use concerns whereby some practitioners
do not observe BDD best practice, notably by avoiding or
downplaying the collaboration aspects, resulting in future costs.
That said, we argue that the observed extent of use, and the
plans to continue using BDD (Fig. 5) are sufficient to attract
the attention of the research community in uncovering better
ways to support BDD practitioners.

RQ2: Perceived benefits and challenges of using BDD:
We use the following factors from the Agile Usage Model
(AUM) [51], [6], [4] to explain the perceived importance,
overall benefits and challenges of BDD. In the AUM, the
following terms are used:

• Relative advantage: “the degree to which the innovation
is perceived to be better than its precursor” ([4], p.2). This
can be reflected in the ability of an agile method to offer
benefits like improved productivity and quality, reduced
cost and time, producing maintainable and evolvable code,
improved morale, collaboration and customer satisfaction
[5].

• Compatibility: “the degree to which agile practices are
perceived as being consistent with the existing practices,
values, and past experiences” ([51], p.4).

• Agile Mindset: A mindset that perceives challenges as
learning opportunities, building on optimism to grow over
time, with effort in place [4].

• Agile Coach: An individual with both technical and
domain knowledge who can point an agile team in right
directions without imposing matters [4].

Generally, BDD has appreciable rating, with more that 50%
(Fig. 6) of the respondents affirming its importance. The use
of domain specific terms, improving communication among
stakeholders, the executable nature of BDD specifications, and
facilitating comprehension of code intention are revealed as
the main benefits of BDD (Table II). These all can be linked
to the relative advantage factor in the AUM that BDD has
over its precursor agile practices like Test-Driven Development
[52]. Actually, it was the TDD’s limitations in enabling teams
to focus on implementing correct software behaviours that led

181



TABLE III
CHALLENGES AND RESEARCH OPPORTUNITIES FOR MAINTENANCE AND EVOLUTION OF BDD SPECIFICATIONS

ID Challenge Opportunity Link to Related Literature

O1 Hard to comprehend BDD specifications Investigate BDD test smells, technical debt, and the adoption
of test suite comprehension techniques to BDD specifications

[18], [19], [20], [21], [22],
[23], [24], [25], [26], [27]

O2 Difficulty of locating faults in large BDD suites Investigate test fault localization techniques in the context of
BDD specifications

[28], [29], [30]

O3 Hard to change BDD suites Investigate automated test repair for BDD specifications [31], [32], [33], [34], [35]
O4 Slow BDD suites Investigate test minimization, selection and prioritization in

the context of BDD
[36], [37], [38], [39]

O5 The need to maintain BDD tests in addition to unit tests Investigate integrated functional and unit test maintenance for
BDD tests

[40], [35]

O6 Complexity of BDD tools Investigate BDD tools selection guides and possible tool
improvements

[41], [42]

O7 Duplication Detection in BDD specifications Investigate duplication detection in the context of BDD [43], [44]
O8 Duplication management in BDD specifications Investigate duplication management in the context of BDD [45]
O9 Non-adherence to the BDD workflow Investigate the incorporation of maintenance concerns at the

core of BDD workflow and tools
[46], [24], [21]

O10 Scarcity of coaching and material guidelines on BDD Investigate the impact of coaching and guidelines on produc-
ing maintainable specifications

[47], [48], [4], [21]

to the birth of BDD [1]. However, a comparative study would
shed light on whether that foreseen BDD’s potential has become
practically evident.

The downside of BDD agreed to by most respondents has to
do with changing the way teams used to approach software
development. This is in line with the compatibility factor
in the AUM: new innovations are likely to face resistance
by some adopters, especially when the adopters are slow at
embracing changes. We posit that an agile mindset is important
in addressing this challenge. Teams’ willingness to learn and
adopt new techniques is important in the adoption of BDD.
Imprecise understanding of the BDD workflow, non-adherence
to it, the scarcity of coaching services and material guidelines
also hinder the adoption and continued use of BDD. An agile
coach with good understanding of the BDD workflow would
help teams to navigate these challenges.

RQ3: Extent and form of maintenance challenges in
BDD specifications: We learned that BDD tests suffer from
the same maintenance challenges that test suites in automated
testing face. Refer to section IV-C or table III for an extended
list. Specifically on duplication, practitioners admitted that the
presence of duplication in BDD specification causes, among
others, test execution, maintenance and evolution problems. To
be of desirable quality, like the code under test, test suites must
be maintainable [21], [26], [53], [19], [54]. As such, we argue
that it is important to investigate test maintainability aspects
such as ease of change, bug detectability (for the bugs in both
test and production code) as well as test comprehensibility [26],
[21], and others, in the context of BDD, to support the work
of practitioners.

RQ4: Problem of duplication in BDD specifications, and
its detection and management: Most respondents think that,
though present, duplication in their BDD specifications remains
a manageable problem. However, duplication is still among the
maintenance challenges of concern to some BDD practitioners.
In fact, in some instances, it has scared away some practitioners
from using BDD: “We decided to not use BDD any more

because it was hard to maintain it. In the beginning we were
checking for duplication, but at one point it has become very
hard to manage them. Even though our tests were very much
readable, our code underneath became less and less readable.”

Referring to Fig. 9, for the most part, duplication detection
and management is done manually (40% of respondents). Nev-
ertheless, there is a significant proportion (17%) of respondents
who have given up the duplication detection and management
process, because of its complexity. Combining these, more than
a half (57%) of the respondents are concerned with duplication
detection and management, except for those in the “other”
category, who either explicitly expressed their need for an
automated solution or mentioned their specific current manual
approach to duplication detection and management. We thus
specifically identified O7 and O8 in Table III as opportunities
for the research community to investigate innovative ways to
help those who either use the manual process, or have given
up, or are likely to experience serious duplication concerns in
the future.

Opportunities: Based on the identified challenges, we sum-
marise, in Table III, the available research opportunities and
link them to the relevant existing literature that covers similar
problems in other areas, apart from BDD. Specifically, O1 to O8

are directly related to maintenance, while O9 and O10 focus on
improving the process that is likely to result into specifications
with significant maintenance problems. Inter alia, we argue that
a body of scientific evidence is required to inform the following
questions:

1) How could the BDD workflow be enhanced to produce
maintainable specifications? Specifically, it might be wor-
thy investigating on whether there are specific bits of
the BDD workflow that are prone to producing hard-to-
maintain specifications, and how that could be redressed.

2) Better ways to adapt existing unit test maintenance tech-
niques to the context of BDD tests. Or how could better
techniques and tools specifically for the maintenance of
BDD tests be developed?

182



3) Better ways to apply the existing regression test suite
reduction, selection and prioritization techniques [36] to
address problems of slow suites due to the presence of
duplication, and other concerns, in BDD specifications.

4) Characterization of duplication in the context of BDD
specifications, and development of appropriate duplication
detection techniques and tools.

5) How could the existing techniques and tools for duplica-
tion detection and management [43], [45] be applied to
the problem of duplication detection and management in
BDD specifications?

The threats to the validity of our results are as follows:
• We mainly depended on practitioners with online presence,

either through github.com or other online forums where
BDD and other agile topics are discussed. Thus, we
might have missed some in-house practitioners that are not
easily reachable through any of those means. To mitigate
the effects of this, we requested those who completed
or saw the survey to refer it to others. Also, we sent
survey completion requests to some practitioners who were
known in person to the authors, and requested them to
share the survey to others.

• Some institutional laws and regulations might have deter-
mined whether or not participants responded in full. To
mitigate the effects of this, we kept any identifying infor-
mation optional, and clearly stated this at the beginning
of the survey, and in all survey completion invitations.

• Most of the respondents might have been using a particular
BDD tool. To mitigate the effects of this, the survey
included seven tools from which respondents could choose
several tools, as well as an “other(s)” option. Also, we
followed the objective criteria mentioned in section III-B
to identify email addresses to which survey completion
requests were sent. Additionally, we posted the survey
in general BDD and agile forums, in anticipation that
respondents from those forums might be using different
tools.

VI. CONCLUSIONS

BDD is now used by many software teams to allow them
to capture the requirements for software systems in a form
that is both readable by their customers and detailed enough
to allow the requirements to be executed to check whether
the production code implements the requirements successfully
or not. The resulting feature descriptions, as sets of concrete
scenarios describing units of required behaviour, provides a
form of living documentation for the system under construction
(as compared to the passive documentation and models familiar
from other approaches to requirements engineering [2]). Un-
fortunately, management of BDD specifications over the long
term can be challenging, particularly when they grow beyond
a handful of features and when multiple development team
members are involved with writing and updating them over
time. Redundancy can creep into the specification, leading to
bloated BDD specifications that are more costly to maintain
and use.

Using quantitative and qualitative data collected through
the web survey, we have reported the activeness of BDD
use in industry, its benefits, general and specific maintenance
challenges, particularly duplication. By reviewing the literature
related to the identified challenges, we propose 10 research
opportunities to support the maintenance and evolution of BDD
specifications.

ACKNOWLEDGEMENTS

We wish to sincerely thank all of our respondents in the BDD
and agile communities around the world, and Caroline Jay of
the School of Computer Science, University of Manchester,
UK, for reviewing our survey.

REFERENCES

[1] D. North, “Introducing BDD,” Better Software Magazine, 2006.
[2] M. Wynne and A. Hellesoy, The Cucumber Book. Pragmatic Program-

mers, LLC, 2012.
[3] A. Mishra, “Introduction to behavior-driven development,” in iOS Code

Testing. Springer, 2017, pp. 317–327.
[4] M. Senapathi and A. Srinivasan, “An empirical investigation of the factors

affecting agile usage,” in Proceedings of the 18th international conference
on evaluation and assessment in software engineering. ACM, 2014,
p. 10.

[5] L. Vijayasarathy and D. Turk, “Agile software development: A survey of
early adopters,” Journal of Information Technology Management, vol. 19,
no. 2, pp. 1–8, 2008.

[6] M. Senapathi and M. L. Drury-Grogan, “Refining a model for sustained
usage of agile methodologies,” Journal of Systems and Software, vol. 132,
pp. 298–316, 2017.

[7] S. Abdalhamid and A. Mishra, “Factors in agile methods adoption,” 2017.
[8] S. W. Suan, “An Automated Assistant for Reducing Duplication in Living

Documentation,” Masters Thesis, School of Computer Science, University
of Manchester, Manchester, United Kingdom, 2015.

[9] T. Chow and D.-B. Cao, “A survey study of critical success factors in
agile software projects,” Journal of systems and software, vol. 81, no. 6,
pp. 961–971, 2008.

[10] D. Janzen and H. Saiedian, “Test-driven development concepts, taxonomy,
and future direction,” Computer, vol. 38, no. 9, pp. 43–50, 2005.

[11] C. Solis and X. Wang, “A study of the characteristics of behaviour
driven development,” in Software Engineering and Advanced Applications
(SEAA), 2011 37th EUROMICRO Conference on. IEEE, 2011, pp. 383–
387.

[12] A. Okolnychyi and K. Fögen, “A study of tools for behavior-driven
development,” Full-scale Software Engineering/Current Trends in Release
Engineering, p. 7, 2016.

[13] M. Rahman and J. Gao, “A reusable automated acceptance testing ar-
chitecture for microservices in behavior-driven development,” in Service-
Oriented System Engineering (SOSE), 2015 IEEE Symposium on. IEEE,
2015, pp. 321–325.

[14] P. Rai, “Extending automated testing to high-level software requirements:
A study on the feasibility of automated acceptance-testing,” Sweeden,
2016.

[15] R. D. Fricker Jr, “Sampling Methods for Online Surveys,” The SAGE
Handbook of Online Research Methods, p. 162, 2016.

[16] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying developers’ adoption of security tools,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 260–271.

[17] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, 2016, pp. 165–176.

[18] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code: An
empirical study,” in Proceedings of the 9th International Workshop on
Search-Based Software Testing. ACM, 2016, pp. 5–14.

[19] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001),
2001, pp. 92–95.

183

https://github.com/


[20] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[21] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan, “How good are
my tests?” in Proceedings of the 8th Workshop on Emerging Trends in
Software Metrics. IEEE Press, 2017, pp. 9–14.

[22] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test
debt,” in Trends in Software Testing. Springer, 2017, pp. 1–17.

[23] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall, “The
impact of test case summaries on bug fixing performance: An empirical
investigation,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 547–558.

[24] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the 26th International Symposium on Software Testing
and Analysis, 2017, pp. 57–67.

[25] M. S. Greiler, “Test suite comprehension for modular and dynamic
systems,” 2013.

[26] D. Gonzalez, J. Santos, A. Popovich, M. Mirakhorli, and M. Nagappan,
“A large-scale study on the usage of testing patterns that address main-
tainability attributes: patterns for ease of modification, diagnoses, and
comprehension,” in Proceedings of the 14th International Conference on
Mining Software Repositories. IEEE Press, 2017, pp. 391–401.

[27] M. Greiler, A. Zaidman, A. v. Deursen, and M.-A. Storey, “Strategies for
avoiding text fixture smells during software evolution,” in Proceedings of
the 10th Working Conference on Mining Software Repositories. IEEE
Press, 2013, pp. 387–396.

[28] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on. IEEE, 2015, pp. 101–110.

[29] R. Ramler, M. Moser, and J. Pichler, “Automated static analysis of unit
test code,” in Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, vol. 2. IEEE, 2016, pp.
25–28.

[30] M. Waterloo, S. Person, and S. Elbaum, “Test analysis: Searching for
faults in tests (n),” in Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. IEEE, 2015, pp. 149–154.

[31] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic
execution,” in Proceedings of the 19th international symposium on
Software testing and analysis. ACM, 2010, pp. 207–218.

[32] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert: Suggesting
repairs for broken unit tests,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 2009, pp. 433–444.

[33] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web appli-
cation test repair,” in Proceedings of the First International Workshop on
End-to-End Test Script Engineering. ACM, 2011, pp. 24–29.

[34] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An incremental
approach for repairing record-replay tests of web applications,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 751–762.

[35] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 33.

[36] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[37] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani, “Effective regression
test case selection: A systematic literature review,” ACM Computing
Surveys (CSUR), vol. 50, no. 2, p. 29, 2017.

[38] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and V. Chang,
“A survey on test suite reduction frameworks and tools,” International
Journal of Information Management, vol. 36, no. 6, pp. 963–975, 2016.

[39] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping
study,” Software Quality Journal, vol. 21, no. 3, pp. 445–478, 2013.

[40] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen, “Mining
software repositories to study co-evolution of production & test code,”
in Software Testing, Verification, and Validation, 2008 1st International
Conference on. IEEE, 2008, pp. 220–229.

[41] A. Rodrigues and A. Dias-Neto, “Relevance and impact of critical factors
of success in software test automation lifecycle: A survey,” in Proceedings
of the 1st Brazilian Symposium on Systematic and Automated Software
Testing. ACM, 2016, p. 6.

[42] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors limiting industrial
adoption of test driven development: A systematic review,” in Software
Testing, Verification and Validation (ICST), 2011 IEEE Fourth Interna-
tional Conference on. IEEE, 2011, pp. 337–346.

[43] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[44] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens School of Computing TR, vol. 541, no. 115, pp. 64–68,
2007.

[45] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software
clone management: Past, present, and future (keynote paper),” in Software
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week-IEEE Conference on. IEEE, 2014, pp.
18–33.

[46] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for detecting
redundant object-oriented unit tests,” in Proceedings of the 19th IEEE
international conference on Automated software engineering. IEEE
Computer Society, 2004, pp. 196–205.

[47] D. Kulak and H. Li, “Getting coaching that really helps,” in The Journey
to Enterprise Agility. Springer, 2017, pp. 197–209.

[48] A. Baah, Agile Quality Assurance: Deliver Quality Software-Providing
Great Business Value. BookBaby, 2017.

[49] J. Iivari and M. Huisman, “The relationship between organizational
culture and the deployment of systems development methodologies,” MIS
Quarterly, pp. 35–58, 2007.

[50] J. Iivari and J. Maansaari, “The usage of systems development methods:
are we stuck to old practices?” Information and software technology,
vol. 40, no. 9, pp. 501–510, 1998.

[51] M. Senapathi, M. Drury, and A. Srinivasan, “Agile usage: Refining a
theoretical model.” in PACIS, 2013, p. 43.

[52] K. Beck, Test-Driven Development: by Example. Addison-Wesley
Professional, 2003.

[53] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen, and J. Grabowski,
“Applying the iso 9126 quality model to test specifications,” Software
Engineering, vol. 15, no. 6, pp. 231–242, 2007.

[54] M. Greiler, A. Van Deursen, and A. Zaidman, “Measuring test case simi-
larity to support test suite understanding,” Objects, Models, Components,
Patterns, pp. 91–107, 2012.

184


	Introduction
	Related Work
	Research Method
	Survey Design
	Respondents
	Data Analysis

	Results
	Extent of Active Use of BDD
	Extent of BDD Use in Various Types of Organizations
	Tools Used by Industry Teams to Support BDD and ATDD
	Plans to Use BDD in the Future

	Perceived Benefits and Challenges
	Perceived Importance and Benefits of BDD
	Challenges Faced by BDD Practitioners

	Challenges of Maintaining BDD Specifications
	Size of BDD Suites
	Maintenance Challenges

	Duplication in BDD Suites
	Problems of Duplication
	Presence of duplication
	Detection and Management of Duplication in BDD Specifications

	Opportunities

	Discussion and Threats to Validity
	Conclusions
	References

